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Abstract
We study Stackelberg security game (SSG) with multiple de-
fenders, where heterogeneous defenders need to allocate se-
curity resources to protect a set of targets against a strate-
gic attacker. In such games, coordination and cooperation
between the defenders can increase their ability to protect
their assets, but the heterogeneous preferences of the self-
interested defenders often make such cooperation very diffi-
cult. In this paper, we approach the problem from the perspec-
tive of cooperative game theory and study coalition formation
among the defenders. Our main contribution is a number of
algorithmic results for the computation problems that arise in
this model. We provide a poly-time algorithm for computing
a solution in the core of the game and show that all of the ele-
ments in the core are Pareto efficient. We show that the prob-
lem of computing the entire core is NP-hard and then delve
into a special setting where the size of a coalition is limited up
to some threshold. We analyse the parameterized complexity
of deciding if a coalition structure is in the core under this
special setting, and provide a poly-time algorithm for com-
puting successful deviation strategies for a given coalition.

1 Introduction
The Multi-defender Stackelberg Security Game (SSG) is a
model developed for studying real-world scenarios where
multiple defenders protect a set of targets against a strategic
attacker, who is their common enemy. The game is a gen-
eralization of the classic single-defender SSG, which was
studied extensively in recent years in the multi-agent com-
munity (Paruchuri et al. 2008; Tambe 2011; Nguyen et al.
2013; Sinha et al. 2018; An and Tambe 2017). The augmen-
tation of defenders makes the model fundamentally different
from single-defender SSGs; understanding the relation be-
tween the defenders becomes the key to analysing the game.

Though there is very limited research, some recent work
proposed non-cooperative game models for multi-defender
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SSGs with corresponding equilibrium concepts for inde-
pendent movement of the defenders (Lou and Vorobeychik
2015; Gan, Elkind, and Wooldridge 2018), which lay foun-
dations for further development of research along this line.
In this paper, we approach this model from the perspective
of cooperative game theory, and aim at understanding for-
mation of defender coalitions in the game.

Indeed, collaboration in the form of coalition formation is
a natural way of achieving efficient defense in the real world.
In multi-defender SSGs, defenders’ movements can be syn-
chronized by collaboration, avoiding overspending of re-
sources. Nevertheless, a recent attempt by Gan et al. (2020)
to use mechanism design to promote defense collaboration
in multi-defender SSGs shows that it’s often not possible
to achieve voluntary collaboration among all defenders in
a multi-defender SSG, no matter what mechanism is used.
The result is primarily due to the heterogeneous preferences
of the defenders over candidate joint strategies to be car-
ried out, which are hard to tame. Indeed, it would be very
demanding to expect defenders with conflicting preferences
to collaborate, but this does not mean that nothing can be
done with those who share similar views or when external
enforcement of cooperative behavior (e.g., via contracting)
is possible. This motivates us to study multi-defender SSGs
using cooperative game theory—a powerful tool for analyz-
ing how agents form stable groups to compete based on their
collective payoffs.

To fit the multi-defender SSG model into the framework
of cooperative game theory, we face two major challenges.
First, SSG is a game with externalities, meaning that the pay-
off value of a coalition is dependent on the other coalitions.
Second, the game is a non-transferable utility game (NTU),
meaning that the defenders’ payoffs cannot be transferred
between each other as monetary payoffs. These two proper-
ties introduce great difficulties in generalizing the model to
allow for coalition formation. To begin with, we cannot de-
fine a utility value for a coalition that depends only on who
are in the coalition; instead, we need to define a utility value
for each defender separately, where a coalition structure is
specified in advance. Furthermore, coalition’s value depends
on the attacker’s strategy (which target they attack), who is a
strategic player but will not be a participant in the coalition



formation. Basically, the attacker will take the best response
that maximizes her utility. However, in general there may be
multiple targets that are equally optimal for the attacker but
each of which results in different utilities for every defender,
making it a challenge to define a defender’s utility.

Our Contribution We make the following contributions
in this paper. First, we present a multi-defender SSG model
that allows coalition formation. The core of this game con-
sists of all coalition structures in which no defender can ben-
efit from deviating from their current coalition in order to
join another. Since it’s a game with externalities, the strate-
gies of the defenders that aren’t deviating must be taken
into account when considering “successful” deviations. We
proposed a α-core definition, where these defenders join to-
gether to take revenge on the deviating defenders.

We then study the problem of computing a coalition struc-
ture in the core. Our main result is that there is always a strat-
egy that results in the grand coalition structure being in the
core, and this strategy can be computed in polynomial time.
In addition, all elements in the core are Pareto efficient, i.e.,
a centralized mechanism that can enforce the agents to fol-
low a given strategy that will give at least defender a higher
utility while not making the other defenders worse off. On
the other hand, the problem of computing the entire core is
NP-hard even in the simple setting with only two defenders;
we present a hardness result. We also present an efficient al-
gorithm to decide if a coalition structure is stable against a
given deviating coalition. The algorithm can be used to de-
cide the stability of a coalition structure against any possible
deviating coalitions; we analyze the parameterized complex-
ity of this problem and consider in particular a setting with
a small number of defender types.

Related Work Multi-agent SSGs have only recently
started to attract attention from the AI community. Lou and
Vorobeychik (2015) first proposed a non-cooperative game
model and analyzed the Nash equilibrium and the price
of anarchy of the game. More recently, Gan, Elkind, and
Wooldridge (2018) studied a variant of the model that as-
sumes that the defenders have common interests in protect-
ing the targets and relaxed the constraint that each of them
only protects a disjoint set of targets; they showed the ex-
istence of Nash equilibrium in their model. Based on this
model, they further considered coordination between de-
fenders and approached it by designing coordination mecha-
nisms (Gan et al. 2020). Our model is largely based on these
three pieces of work, though we focus on cooperative games.
There are other papers on the applications of multi-defender
SSGs or similar models (Jiang et al. 2013; Laszka, Lou, and
Vorobeychik 2016; Castiglioni, Marchesi, and Gatti 2019),
which are either conceptually very different from our model
or are meant for very specific scenarios. To the best of our
knowledge, our paper is the first to study multi-defender
SSGs from the perspective of cooperative game theory.

As we’ve mentioned, our model is an NTU game with ex-
ternalities. There have been different approaches in the lit-
erature for studying coalition formation in such games. Yi

(1996) studied how the sign of external effects affects the
stability of coalition structures, and how to leverage this in-
formation to provide a useful organizing principle when ex-
amining coalition structures. Finus and Rundshagen (2003)
derived a non-cooperative foundation of core-stability for
positive externality NTU-games. Dunne et al. (2010), Chan-
der (2010), and Rahwan et al. (2012) developed solution
concepts for coalitional resource games and supplied some
techniques for finding solutions under certain assumptions.
Skibski, Michalak, and Wooldridge (2018) offered a gen-
eralization of the stochastic Shapley value for coalitional
games with externalities. Our work differs from previous
work as our underlying model is an SSG that has a leader-
follower action sequence among the players. The attacker is
a special player in the game, who is strategic but will never
join any coalition. This introduces many challenges to mod-
eling and analyzing the game as we will show in this paper.

2 Preliminaries: Multi-defender SSGs
In a multi-defender SSG, there are n defenders 1, . . . , n, and
a set T of m targets, which the defenders want to protect;
there is an attacker who wants to attack the targets. For any
integer n > 0, we write [n] = {1, . . . , n} in this paper. Each
defender i ∈ [n] has ki ∈ N security resources that can
be allocated to the targets to protect them. Using random-
ized allocation strategies, the resources of a defender can be
distributed continuously, resulting in a vector x = (xt)t∈T ,
such that xt is the probability of target t being protected by
some (at least one) resource. We call such vectors cover-
age (vectors); they will be crucial for defining the players’
utilities, which we will do shortly. With ki resources, each
defender i can use a coverage vector x ∈ Cki as their alloca-
tion strategy, where for any integer k > 0, it is defined that
Ck = {x ∈ [0, 1]m :

∑
t∈T xt ≤ k}; provably, such vec-

tors can be implemented by a distribution over deterministic
allocation strategies, each using at most k resources. For ex-
ample, a defender with two resources can use a coverage
vector (0.6, 1, 0.4) ∈ C2 over three targets; this vector can
be implemented by allocating the resources to the first two
targets w.p. 0.6, and to the last two targets w.p. 0.4.

Suppose that each defender i uses a coverage vector xi =
(xit)t∈T . When the defenders are uncoordinated, they act
independently; hence, each target t ∈ T will be protected by
some defender with probability

ct = 1−
∏
i∈[n](1− xit),

i.e.,
∏
i∈[n](1− xit) is the probability that t is not protected

by any defender. We will refer to the vector c = (ct)t∈T as
the overall coverage (vector). As in a standard SSG model,
the attacker wants to attack the targets, and they can conduct
surveillance on the defenders’ joint strategy beforehand and
best respond to it. Suppose the attacker chooses to attack
some target t ∈ T . Following the standard SSG model, the
attack will be successful if no resource is allocated to pro-
tect t, which happens with probability 1−ct (we assume that
the defenders’ resources are homogeneous). In this case, the
attacker receives a reward value ra(t) and each defender i
receives a penalty value pdi (t). On the other hand, the at-
tack will fail if at least one resource is allocated to protect it,



which happens with probability ct, and in which case the at-
tacker receives a penalty pa(t) and each defender i receives
a reward rdi (t). Thus, we can write the utility functions of
each defender and the attacker as follows:

Udi (c, t) = ct · rdi (t) + (1− ct) · pdi (t) (1)
Ua(c, t) = (1− ct) · ra(t) + ct · pa(t) (2)

Note that for every target t, it’s assumed that rdi (t) > pdi (t)
and ra(t) > pa(t), so all defenders prefer an unsuccessful
attack to a successful one and the attacker prefers the oppo-
site.

Thus, as a rational player, after knowing the defenders’
strategies and hence, the overall coverage c, the attacker will
best respond by attacking a target in the set

BR(c) := arg maxt∈T U
a(c, t)

that maximizes their expected utility in this situation. When
there are multiple targets in BR(c), we follow the modeling
approach by Gan, Elkind, and Wooldridge (2018) and as-
sume that the defenders will adopt the pessimistic assump-
tion about the attacker’s tie-breaking behavior. Hence, we
define

bri(c) = arg mint∈BR(c) U
d
i (c, t);

that is, the target which defender i believes will be selected
by the attacker.

3 Coalition Formation
When the defenders are uncoordinated, independent move-
ment inevitably causes inefficient resource use. More specif-
ically, if two defenders both protect a target with some pos-
itive probability, that results in a positive probability when
both defenders appear on this target, which is not necessary
since according to the SSG model, one resource is sufficient
for thwarting the attacker’s attack. We study how the defend-
ers can form coalitions to improve efficiency of resource use
and gain advantages in the game. When a subset S ⊆ [n] of
defenders form a coalition, they can allocate their resources
jointly and play as a single defender in the game, who has
kS =

∑
i∈S ki resources. For example, if two defenders

move independently and each of them has one resource, the
set of overall coverage vectors over three targets, which can
be generated from their joint strategy, is{
c ∈ R3 : ct = 1−(1−x1t)(1−x2t)∀t ∈ T,x1,x2 ∈ C1

}
It is not hard to verify that this set is strictly contained in C2,
which is the set of coverage vectors these two defenders can
use if they coordinate their resource allocation, allocating
resources jointly as if they are one defender. A coalition is
called the grand coalition if it contains all the defenders.

Therefore, coalition formation results in a partition of the
set of defenders, which we refer to as a coalition set, denoted
as P = {P1, . . . , Pl}, such that

⋃
· li=1 Pi = [n]. Each coali-

tion Pi then chooses a joint strategy xi ∈ CkPi . Intuitively,
the game now becomes a multi-defender SSG played by the
coalitions. Similarly, the strategy profile X = (x1, . . . ,xl)
of the coalitions now induces the following overall coverage
for each target t:

covt(X) := 1−
∏
i∈[l] (1− xit) . (3)

Similarly, we write the overall coverage vector as cov(X) =
(covt(X))t∈T . Given a strategy profile X and an attacker
response t, the players’ utilities are defined in the same way
as in (1) and (2). Since a strategy profile X defines a unique
coverage, for notational simplicity, we will sometimes write
X instead of cov(X) in places where a coverage vector is
expected, e.g., we write Udi (X, t) = Udi (cov(X), t) and
BR(X) = BR(cov(X)). We call a coalition set equipped
with a strategy profile a coalition structure, and denote it by
CS = 〈P, X〉 = {(P1,x1), . . . , (Pl,xl)}.
Definition 3.1 (Coalition structure). A coalition structure
CS is a coalition set P = (P1, . . . , Pl) (i.e., a partition of
[n]) equipped with a strategy profile X = (x1, . . . ,xl),
such that xi ∈ CkPi for each i = 1, . . . , l. We denote
CS = 〈P, X〉 = {〈P1,x1〉, . . . , 〈Pl,xl〉}.

Similarly, since CS corresponds to a unique overall cov-
erage vector, we will also view the players’ utilities and best
response as functions of CS . More concisely, we let

Udi (CS) := Udi (CS, bri(CS))

be the utility a coalition structure CS yields for defender i.
We remark that our game is an NTU game with externalities,
which is different to many other coalitional games where a
value function v : 2n → R≥0 determines the core uniquely
under a relatively reasonable set of axioms. We define the
core concept for our game next.

3.1 Core of Coalition Structures
Given a coalition structure CS , a subset of defenders can
choose to deviate from the coalitions in CS and form a new
coalition to improve their utilities. We define a deviation as
a subset of defenders D ⊆ [n] and a joint strategy x ∈ CkD
of them, which will be played after the deviation.

Definition 3.2 (Deviation). A deviation 〈D,x〉 from a
coalition structure CS is a nonempty subset of defenders
D ⊆ [n] and a joint strategy x ∈ CkD of these defenders,
which will be played after the deviation.

To further describe the outcome after a deviation and eval-
uate the benefit of making that deviation, we need to spec-
ify how the other defenders will react to a deviation (again,
this is because the externalities in our game, so the utili-
ties generated by a deviation do not depend on the devi-
ating coalition alone). We consider the concept of α-core
which assumes that the other defenders will take revenge
against any deviation to protect the status quo (Moulin and
Peleg 1982; Chalkiadakis, Elkind, and Wooldridge 2011).
More concretely, we assume that after a deviation we expect
to see a deviators’ coalition D and a revengers’ coalition
R = [n] \ D formed by the other defenders. The revenger
coalition aims at making at least one deviator worse off, so
as to prevent the deviation from happening. A deviation can-
not be successful if the revengers can indeed achieve this.

Definition 3.3 (ε-successful deviation). For any ε > 0,
a deviation 〈D,x〉 from a coalition structure CS is ε-
successful if every defender i ∈ D gets a utility improve-
ment of at least ε no matter what strategy the revengers’
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Figure 1: The tank-filling visualization (Gan, Elkind, and
Wooldridge 2018).

coalition R = [n] \ D uses, i.e., for all i ∈ D and all
y ∈ CkR , it holds that

Udi (CS ′) ≥ Udi (CS) + ε,

where CS ′ = {〈D,x〉, 〈R,y〉}.
In other words, a defender does not cooperate in a devi-

ation unless she gets a strict utility improvement over the
previous coalition structure. We also call a 0-successful de-
viation a successful deviation.

Definition 3.4 (ε-core). A coalition structure CS is in the
ε-core if there exists no ε-successful deviation from it.

In fact, the above definition still leaves one modeling is-
sue for us to deal with. We assume that the utility of each
defender i is determined by bri, but under this assumption,
a defender can always reduce the protection to some target
to make the attacker strictly prefer attacking that target, thus
avoiding the worst target bri to be chosen. Thus, as long as
BR is not a singleton, the coalition structure will normally
not be stable. To deal with this modeling issue, we view the
core as a limit point in a similar vein to the 0+-NSE defined
by Gan, Elkind, and Wooldridge (2018) and introduce the
following definition.

Definition 3.5 (0+-core). A coalition structure CS is in the
0+-core if there exists a sequence of coalition structures(
CS`

)∞
`=1

and a sequence of real numbers (ε`)∞`=1, such

that every CS` is in the ε`-Core, lim`→∞ CS` = CS and
lim`→∞ ε` = 0.

4 Non-Emptyness and Efficiency of 0+-Core
In this section, we will show that the 0+-core is nonempty
and it provides efficiency guarantees. To present our re-
sults, we will use the tank-filling model introduced by Gan,
Elkind, and Wooldridge (2018). We introduce the following
notions.

Definition 4.1 (Height of a coverage). The height of a cov-
erage vector c ∈ Rm, denoted height(c), is the optimal at-
tacker utility it yields, i.e., height(c) := maxj U

a(c, j).

Definition 4.2 (Level coverage). A coverage vector c is
said to be level, if ct = 0 for all t 6∈ BR(c). A strategy
profile X is level if cov(X) is level.

The tank-filling model is illustrated in Figure 1. Briefly
speaking, each tank in the figure corresponds to a target

t ∈ T , and the amount of water in it represents the cover-
age of that target. The width of tank t is exactly 1

ra(t)−pa(t) ,
so the height of the water surface as indicated on the left axis
represents exactly the attacker’s utility of attacking target t.
The intuition of this model is that in a stable state, the water
in the tanks must form a level across all of the tanks and the
corresponding coverage vector is level as defined in Defini-
tion 4.2; indeed, if the coverage is not level, some defender
would rather shift resources from overly protected targets to
the least protected ones (which will be attacked by the at-
tacker) to increase their utility.

For simplicity, in the remainder of this paper, we will fo-
cus only on canonical games, where the maximal level cov-
erage exists (see Definitions 4.3 and 4.4). Intuitively, if a
game is not a canonical game, by putting k[n] units of water
in the tank-filling model, the water surface will reach the top
of some tank (i.e., ǔ as shown in Figure 1). This introduces
additional complexities for proving results to be presented
while in practice we expect non-canonical games to be rare
as resources are usually insufficient to allow a target in the
attacker’s best response set to be fully covered. All our re-
sults can also be extended to non-canonical games by using
an approach similar to the one used by Gan, Elkind, and
Wooldridge (2018) to show the existence of equilibrium in
the uncoordinated situation.

Definition 4.3 (Maximal level coverage). A level coverage
c is called the maximal level coverage if

∑
t∈T c = k[n].

Definition 4.4 (Canonical game). A game is called a
canonical game if there exists a maximal level coverage c.

4.1 Non-Emptiness of 0+-Core
We first present a characterization of coalition structures in
the 0+-core in the lemma below. The proof of this lemma is
omitted due to space limitations.1

Lemma 4.5. Suppose that a coalition structure CS =
〈P, X〉 results in a coverage vector c. If the game is canon-
ical, then CS is in the 0+-core if and only if it satisfies the
following two conditions:

i. ct = ct for all t ∈ T , where c is the maximal level cover-
age.

ii. There exists t∗ such that ct∗ > 0 and for every deviation
〈D,x〉, it holds that Udi ({〈D,x〉, 〈R,y〉}) ≤ Udi (c, t∗)
for some i ∈ [n] and y ∈ CkR .

Intuitively, the first condition is due to the fact that if the
coverage is not level, then some defender(s) could always
re-balance the coverage to improve the coverage of targets
in the attacker’s best response set; this will improve the de-
fender’s utility accordingly. In the second condition, the tar-
get t∗ corresponds to the limit point of the attacker’s best
response in the sequence of coalition structure that defines
CS; this condition can help simplify our analysis about the
limit point in the definition of the 0+-core (Definition 3.5),
so that we only need to find a target t∗ in order to show that
a coalition structure is in the 0+-core.

1Omitted proofs can be found in the full version of this paper.



Algorithm 1: Construct a coalition structure in the
0+-core.

Input : a canonical game instance;
Output: CS = {〈[n], c〉}, t∗, and z1, . . . , zn.

1. Let zi = (0, . . . , 0) ∈ Rm for each i ∈ [n].
Let cj :=

∑
i∈[n] zij for all j ∈ T throughout.

Let c be the maximal coverage.

2. For each defender i = 1, . . . , n:

– Sort targets in T , so that
Udi (c, t1) ≤ Udi (c, t2) ≤ · · · ≤ Udi (c, tm).

– For each j = t1, . . . , tm:
Increase zij until cj = cj , or

∑
j′∈T zij′ = ki.

If zij > 0, let t∗ = j.

Given Lemma 4.5, our approach to proving the non-
emptyness of the 0+-core is to construct a coalition structure
which satisfies the conditions in this lemma. The way we
construct this coalition is inspired by the approach of Gan,
Elkind, and Wooldridge (2018) for constructing a Nash-like
equilibrium; we present it in Algorithm 1. The difference
is that here we let the defenders form a grand coalition, so
they can allocate their resources as if they are one defender;
this results in the coverage contributed by each defender to
be additive, instead of sub-additive as in the situation where
they move independently.

In Algorithm 1, each defender is invited to distribute re-
sources; the goal is for the resulting coverage to reach the
maximal level coverage c. The defenders come one by one
and distribute their resources according to the order deter-
mined by the values Uai (c, t); once the coverage of a target
t is improved to ct, they move to the next target and repeat
until their resources are used up (i.e., when

∑
j∈Tzij = ki).

Hence, zij indicates the amount of resources defender i con-
tributes to target j; these variables and t∗ are set to help us
verify the second condition of Lemma 4.5 in the proof of the
next theorem, which shows that the 0+-core is non-empty.
Theorem 4.6. The 0+-core is non-empty and it always con-
tains a grand coalition structure.

Proof. We show that the grand coalition structure CS gener-
ated by Algorithm 1 satisfies the two conditions in the state-
ment of Lemma 4.5, so it is in the 0+-core.

Note that Algorithm 1 always ends with c = c. Indeed,
suppose that this is not the case, according to the way c is
updated in the algorithm we always have cj ≤ cj for all j,
so the only possibility when we have c 6= c is that c` < c`
for some target `. This implies that∑

j∈T cj <
∑
j∈T cj = k[n]

given that c is the maximal level coverage. Hence,∑
i∈[n],j∈T zij =

∑
j∈T cj < k[n],

which means that
∑
j∈T zij < ki for some defender i. This

is a contradiction because we would expect c` = c` when

we increase zi` in Step 2. Thus, CS satisfies Condition (i) of
Lemma 4.5.

It remains to show that the second condition is also satis-
fied. We let t∗ be the target in the output of the algorithm.
Indeed, we have ct∗ > 0 as it is always points to a target that
receives a positive improvement in its coverage as in Step 2.
Pick arbitrary D ⊆ [n] and deviating strategy x ∈ kD. We
show that the strategy y with

yj =
∑
i∈R zij for all j ∈ T

will make the inequality in Condition (ii) hold. Note that
according to Step 2, we have

∑
j∈T zij ≤ ki for all j, so it

follows that
∑
j∈T yj =

∑
i∈R

∑
j∈T zij ≤ kR and indeed

y ∈ CkR .
Let CS ′ = {〈D,x〉, 〈R,y〉} and c′ be the coverage re-

sulting from CS ′, i.e., c′j = 1− (1− xt)(1− yt). If c′ = c,
then we have

Udi (CS ′) = min
t∈BR(c)

Udi (c, t) ≤ Udi (c, t∗),

where we use the fact that t∗ ∈ BR(c) given that c = c is
a level coverage and ct∗ > 0 (see Definition 4.2). Hence,
Condition (ii) holds. In what follows we assume that c′t 6= ct
for some t.

We must have c′` < c` for some ` ∈ T : otherwise, c′t ≥
ct for all t while at least one of these inequalities must be
strictly satisfied, which leads to the following contradiction:

k[n] =
∑
t∈T

ct =
∑
t∈T

ct <
∑
t∈T

c′t =∑
t∈T

(1− (1− xt)(1− yt)) ≤
∑
t∈T

(xt + yt) ≤ k[n].

Pick an arbitrary `∗ ∈ BR(c′). It must be that c′`∗ < c`∗ :
otherwise, c′`∗ ≥ c`∗ , so we can establish the following in-
equalities, which contradicts the fact that `∗ ∈ BR(c′):

Ua(c′, `∗) ≤ Ua(c, `∗) ≤ Ua(c, `) < Ua(c′, `),

where the first and third transitions follow by monotonicity
of the utility function; and the second transition is due to the
fact that ` ∈ BR(c) (as c is level and c` > 0).

Observe that for all j with
∑
i∈D zij = 0, we have

c′j ≥ yj =
∑
i∈R zij =

∑
i∈[n] zij = ct.

Thus, we must have
∑
i∈D zi`∗ > 0, which means zi`∗ > 0

for some i ∈ D. This implies that Udi (c, `∗) ≤ Udi (c, t∗):
if the opposite holds, it must be that when zi`∗ is set to a
positive value at Step 2 of Algorithm 1, we already have
ct∗ = ct∗ ; this contradicts the fact that t∗ is the last target
that reaches coverage c. Consequently, we have

Udi (CS ′) = min
t∈BR(c′)

Udi (c′, t)

≤ Udi (c′, `∗) < Udi (c, `∗) ≤ Udi (c, t∗) = Udi (c, t∗)

(recall that c′`∗ < c`∗ = c`∗ ) so Condition (ii) holds, too.

Nevertheless, according to the following theorem, the
problem becomes hard if we exclude the grand coalition
from our consideration. In other words, to compute the en-
tire core is computationally hard.



Theorem 4.7. It is NP-hard to decide if the 0+-core con-
tains any coalition structure CS = 〈P, X〉 where P does
not contain the grand coalition even when n = 2.

4.2 Efficiency of 0+-Core
It turns out that the 0+-core also guarantees some efficiency
properties given that the coverage is always “maximized” by
Lemma 4.5. The following result says that a coalition struc-
ture in the 0+-core is weakly Pareto efficient, meaning that
the situation cannot be strictly improved for every defender
in any other coalition structure.

Proposition 4.8. For every coalition structure sequence(
CS`

)∞
`=1

associated with a CS in the 0+-core, there ex-

ists no coalition structure CS ′ such that for every defender
i ∈ [n], it holds that Udi (CS ′) > lim`→∞ Udi (CS`).

Indeed, a stronger notion of the 0+-core, call it strict 0+-
core, can be defined by using a weaker notion of ε-successful
deviation, which only requires some (instead of all) deviator
to have an ε advantage as long as the other deviators will not
be hurt by the deviation (i.e., the others have advantages of at
least 0). The strict 0+-core may be empty (see Example B.1).
However, when it is not empty, any coalition structure in it is
(strongly) Pareto efficient. In other words, given a coalition
structure in the strict 0+-core, one cannot hope that, by us-
ing a centralized mechanism that enforces the defenders to
follow a given strategy, we can improve the utility of some
defender without hurting the others. We present this result
below.

Proposition 4.9. Every coalition structure in the strict 0+-
core is Pareto efficient. For every coalition structure se-

quence
(
CS`

)∞
`=1

associated with a CS in the strict 0+-

core, there exists no coalition structure CS ′ and defender
i such that Udi (CS ′) > lim`→∞ Udi (CS`) and for every
other defender j ∈ [n] \ {i} it holds that Udj (CS ′) ≥
lim`→∞ Udj (CS`).

5 Stability of a Coalition Structure
We have shown that the grand coalition is always in the 0+-
core. In this section, we investigate the problem of deciding
the stability of a given coalition structure; namely, whether
it is in the 0+-core. Our main result in this section is an
efficient algorithm for deciding the stability of a coalition
structure against a given deviating coalition D. To present
this result, we first define the following useful notions.

Definition 5.1 (ε-safety demand). The ε-safety demand
(ε > 0) of a defender i ∈ [n] with respect to a coalition
structure CS is a vector sεi = (sεit)t∈T ∈ [0, 1]m, such that

sεit = max

{
0,

Udi (CS) + ε− pdi (t)
rdi (t)− pdi (t)

}
. (4)

The safety demand of a set D ⊆ [n] of defenders with re-
spect to CS is a vector sε = (sεt)t∈T ∈ [0, 1]m such that

sεt = max
i∈D

sεit.

Algorithm 2: Solve (5).
Input : CS, D;
Output: x, v.

1. Compute the ε-safety demand s of coalition D with
respect to CS according to (4). Sort targets in T , so that
Ua(s, t1) ≥ Ua(s, t2) ≥ · · · ≥ Ua(s, tm);

2. For each j = 0, 1, . . . ,m:
– Let T+ = {t` ∈ T : ` ≤ j} and T− = T \ T+;
– Solve the following LP (linear program):

minx,v v

subject to v ≥ Ua(xt, t) for all t ∈ T−

0 ≤ xt ≤ 1 for all t ∈ T−

sεt ≤ xt ≤ 1 for all t ∈ T+∑
t∈T− xt ≤ q

3. Find the LP in Step 2 with the smallest optimal objective
value.2 Output the optimal solution x and v of this LP.

Definition 5.2 (ε-safe deviation strategy and safety value).
With respect to CS , an ε-safe (ε > 0) deviation strategy x for
a coalition D is the solution to the following optimization:

min
x′∈CkD

max
t∈T :x′t<s

ε
t

Ua(x′, t), (5)

where s is the safety demand of D and when {t ∈ T : x′t <
sεt} = ∅ we define maxt∈T :x′t<s

ε
t
Ua(x′, t) = −∞. We call

the optimal value of (5) the ε-safety value of D.
In other words, Definition 5.1 ensures that a target t be-

ing attacked does not remove the deviating coalition’s incen-
tive to deviate as long as the coverage of t is not below the
safety demand. As for targets that receive coverage below
the safety demand, the deviating coalition can only hope that
they are not the best response of the attacker. Hence, the idea
behind (5) is to minimize the attacker’s utility for attacking
these targets.

In what follows, for any strategy x, we define T+
x = {t ∈

T : xt ≥ sεt} and T−x = {t ∈ T : xt < sεt}. The following
lemmas provide useful characterizations for ε-safe deviation
strategies and ε-successful strategies. Using these lemmas,
we prove our main result Theorem 5.5.
Lemma 5.3. Let x be an ε-safe deviation strategy of a coali-
tion D ⊆ [n] and v be the ε-safety value. If v > −∞, then it
holds that:
i. v = Ua(x, t1) ≤ Ua(x, t2), for any t1 ∈ T−x , t2 ∈ T+

x ;
ii. xt = sεt for all t ∈ T+

x .
Lemma 5.4. Let x be an ε-safe deviation strategy of a coali-
tion D ⊆ [n] with respect to CS , and v be the ε-safety value.
Let γt = ra(t)−v

ra(t)−pa(t) for each t ∈ T (so that Ua(γt, t) = v).
Then D has an ε-successful deviation from CS if and only if
one of the following conditions is true:

2We let the optimal objective value be∞ when the program is
infeasible, and −∞ when it is unbounded.



• v = −∞;
• γt > 1 for some t ∈ T+

x ; or

•
∑
t∈T+

x

γt−sεt
1−sεt

> kR, where R = [n] \D is the revergers’
coalition.

Theorem 5.5. There is a polynomial-time algorithm to de-
cide whether a coalition D ⊆ [n] has an ε-successful devia-
tion strategy from a coalition structure CS .

Proof. Using Lemma 5.4, our approach to deciding the sta-
bility of a coalition structure against a coalitionD is to com-
pute an ε-safe deviation strategy and check whether any of
the conditions in Lemma 5.4 holds. Indeed, given x and v,
to verify the conditions is trivial, so the key is to solve the
optimization problem defined in (5). To this end, we present
Algorithm 2 (which is obviously a polynomial-time algo-
rithm) and show that it outputs an optimal solution to (5)
correctly. To distinguish, let x∗ be an optimal solution to (5)
and v∗ = maxt∈T :x′t<s

ε
t
Ua(x∗, t) be the corresponding ob-

jective value.
For the output x and v of Algorithm 2, the constraints of

the LP in Step 2 of the algorithm ensures that T−x ⊆ T−, so
we have

v = max
t∈T−

Ua(x, t) ≥ max
t∈T :x′t<s

ε
t

Ua(x, t) ≥ v∗. (6)

On the other hand, observe that the LP is equivalent to:
minx′∈CkD maxt∈T− U

a(x′, t). Hence, as long as in some
round it holds that T− = T−x∗ , we will have

v = min
x′∈CkD

max
t∈T−

Ua(x′, t)

≤ max
t∈T−

Ua(x∗, t) = max
t∈T−

x∗

Ua(x∗, t) = v∗

and hence, v = v∗, which will then complete the proof. We
show next that indeed T− = T−x∗ in some round.

If T−x∗ = ∅ or T+
x∗ = ∅, then in round j = m or j =

0, we have T− = T−x∗ . Otherwise, T−x∗ 6= ∅ implies that
v∗ > −∞, so Lemma 5.3 is applicable, according to which
the following inequality holds for any a ∈ T−x∗ and b ∈ T+

x∗ :

Ua(s, a) < Ua(x∗, a) ≤ Ua(x, b) = Ua(s, b).

Since t1, . . . , tm are ordered according to the value Ua(s, t),
the above inequality implies that there exists j ∈ [m − 1]
such that T+

x∗ = {t1, . . . , tj} and T−x∗ = {tj+1, . . . , tm}. In
round j, we have exactly T− = T−x∗ .

We have presented an efficient way to decide the stability
of a coalition structure against a given deviating coalition.
Generally speaking, if a deviating coalition is not provided,
we do not know yet how to deal with this task; we leave this
problem open in this paper. Despite this unanswered prob-
lem, we will next discuss a special setting that allow us to
adapt the above results to decide the stability of a coalition
structure against any possible deviating coalition.

Trivially, now that we know how to decide if a given coali-
tion has a successful deviating strategy, when there is only
a small number of defenders we can enumerate all 2n − 1

coalitions to check the stability. Similarly, if the size of coali-
tions the defenders can form is bounded by a small number,
the same approach applies. A slightly more complex realis-
tic setting is one in which the number of defenders is un-
bounded but the number of possible defender types is small.
Such games were studied by Shrot, Aumann, and Kraus
(2010). In our model, two defenders have the same type if
they have the same payoff parameters, i.e., pdi (t) = pdj (t)

and rdi (t) = rdj (t) for every t ∈ T . Theorem 5.6 shows that
if the number of types is fixed, we can decide the stability
of a coalition structure in polynomial time. The key idea for
proving this result is to show that it suffices to enumerate all
the possible combinations of defender types.

Theorem 5.6. There is an algorithm for deciding whether
a coalition structure is in the ε-core or not that runs in time
O(2λ poly(m,n)), where λ is the number of defender types.

6 Conclusion
We provide a model of a coalitional multi-defender security
game that enables defenders to form coalitions and distribute
their resources jointly. We focus on the solution concept of
the core. We prove that the 0+-core is none-empty, give a
polynomial-time algorithm for computing a grand coalition
structure in the 0+-core, and show that it is NP-hard to com-
pute the entire core even when there is a fixed number of
defenders. We also discuss the stability of a coalition struc-
ture against a given deviating coalition and the parameter-
ized complexity of validating that a coalition structure is in
the core.

There are other two possible approaches that could have
been considered, namely, coordination mechanism and ne-
gotiation. However, in coordination mechanism, we assume
the existence of a reliable third party, and that all of the
defenders report their properties honestly to that party and
that they all accept the resultant decision. None of these
assumptions are required in our coalition formation frame-
work. Moreover, even with the strong assumptions that co-
ordination mechanism requires, it cannot yield a better solu-
tion for the parties than our stable grand coalition structure.

As for negotiation, a challenge to deal with is when a de-
fender opts out of negotiation. One can consider frameworks
in which the defenders that reach an agreement are able to
punish the defenders that opted out. Conversely, there are
games where the opting out defenders can take advantage of
the agreed upon strategies of the other defenders. In order for
this approach to work, it has to be efficient, to have a utility
guarantee and for the complexity of finding the equilibrium
negotiation strategies to be low.

The idea of a coalitional Stackelberg game can evolve in
many directions. It is interesting to consider settings where
the game does not have complete information, that is, the at-
tacker may not be aware of the defenders’ allocation strate-
gies. Furthermore, the dependencies between targets may be
considered. Protecting one target may also protect other tar-
gets close to it. Moreover, a more relaxed definition for the
core should be considered, such as γ-core. We assumed that
after deviation the rest of the defenders take revenge, how-
ever this may, in general, not be a credible threat.
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A Omitted Proofs
A.1 Proof of Lemma 4.5
First, we show that any coalition structure that satisfies the
conditions of the lemma is in the 0+-core.

Let CS =
{

([n], π)
}

be a coalition structure that satis-
fies the conditions of the theorem, with some fixed target
t∗. Since by the first condition c is a level coverage, and
since ct∗ > 0, by definition t∗ ∈ BR. Therefore, for any
δ > 0, if we reduce the the coverage of target t∗ by δ, then
BR = {t∗}. Let this coalition structure be CSδ , and consider
a series 0 < δ` → 0. Then we have that CSδ` converges to
CS .

Therefore, by definition of the 0+-core, it is enough to
prove that CSδ` is in some ε`-core, where 0 < ε` → 0. Let
(D,x) be some deviation. Then by the 2nd condition, there
exist a defender i and a revenge strategy y for the revenge
coalition R, such that Udi (CS ′) ≤ Udi (c, t∗), where CS ′ =
{〈D,x〉, 〈R,y〉}.

Note that Udi (CSδ`) = Udi (CSδ` , t∗) = Udi (c, t∗) − δ` ·
(rdi (t∗)−pdi (t∗)). If we let ε` := δ` ·(rdi (t∗)−pdi (t∗)), then:

Udi (CS ′) ≤ Udi (CSδ`) + ε`,

and therefore CSδ` is in the ε`-core, and ε` → 0.
Next, let CS be a coalition structure in the core. Let

{CS`}∞`=1 be a corresponding sequence of coalition struc-
tures in the ε`-core, where ε` → 0. We must show that it
satisfies the both conditions of the lemma. Denote by c(`)

the coverage vector of coalition structure CS`.
As for the 1st condition, if it doesn’t hold, then there is a

target t ∈ T such that ct < ct. Observe the following devia-
tion of the grand coalition [n]: We take c′j = 0.5·cj+0.5·cj .
Intuitively, this increases the coverage of less protected tar-
gets and decreases the coverage of overly protected tar-
gets (while preserving the preference order of the attacker).
Note that since

∑
j c
′
j = 0.5 ·

∑
j cj + 0.5 ·

∑
j cj ≤

0.5 ·
∑
j kj + 0.5 ·

∑
j kj =

∑
j kj , it is a legal coverage

vector.
Let A = {t : ct < ct}, and A` = {t : c

(`)
t < ct}. By limit

definition, there exist some `0 such that for every ` > `0,
A` = A. Let B = {t : ct > ct}, and B` = {t : c

(`)
t > ct}.

By limit definition, there exist some `1 such that for every
` > `1, B` = B.

Observe that, for each target t, we have

Udi (c′, t) = Udi (c(`), t)+(1/2ct−1/2c
(`)
t ) ·(rdi (t)−pdi (t)).

By limit definition, there exist some `2 ≥ max(`0, `1), such
that for every ` ≥ `2, and for every target t ∈ A, ct − c(`)t >
(ct − ct)/2.

Let ε = mint∈A
(ct−ct)

2 ·mini (rdi (t)− pdi (t)), then we
will show that c′ is an ε successful deviation for every ` ≥
`2. Let i be some defender and let t ∈ bri(c

(`)). Then t 6∈ B.
If t ∈ A, then the advantage of i from the deviation is indeed
more than ε. The case left is when ct = ct. However, this
suggests that c(`) = c. However, that can happen only for
finitely many times, or else we will have c as a partial limit,
and therefore c = c. Therefore, there exists `2 ≥ `1 such
for each ` ≥ `2, we have BR(c(`)) ⊆ A. Now let `3 ≥

`2 such that CS`2 is in the ε`3 < ε-core. This results in a
contradiction.

Now assume the first condition holds, but the sec-
ond doesn’t. In that case, let t be some target with
ct > 0. Then we have a deviation 〈D,x〉 such that
Udi ({〈D,x〉, 〈R,y〉}) > Udi (c, t) for every i ∈ [n] and
y ∈ CkR . Let ε = mini(U

d
i ({〈D,x〉, 〈R,y〉})− Udi (c, t)).

There exist some `0 such that for every ` ≥ `0, |Udi (c, t)−
Udi (c(`), t)| < ε/2. Therefore, we have:

Udi ({〈D,x〉, 〈R,y〉})−Udi (c(`), t) = (Udi ({〈D,x〉, 〈R,y〉})−Udi (c, t))+(Udi (c, t)−Udi (c(`), t)) ≥ ε−ε/2 = ε/2

Denote by C = {t : ct > 0}, and C` = {t : c
(`)
t > 0}. By

limit definition, there exist some `1 > `0 such that for every
` > `1, C` = C.

Now there are 2 cases: in the first case, BR(c)∩C =6= ∅.
In this case, 〈D,x〉 is an ε successful deviation from ev-
ery CS` where ` ≥ `1. This is because for each defender,
Udi (c) ≤ Udi (c, t) for some t ∈ BR(c) ∩ C. Therefore, tak-
ing `2 ≥ `1 such that ε` < ε will give a contradiction to the
fact that CS`2 is in the ε`2 -core.

Therefore, it must be the second case, where each target
t ∈ BR(c) yields ct = 0. However, this suggests that c = 0,
which is clearly not in the core.

A.2 Proof of Theorem 4.7
We show a reduction from the PARTITION problem, which
is one of the classic NP-complete problems. An instance of
the PARTITION problem is given by a set of positive inte-
gers I = {a1, . . . , al}. It is a yes-instance if there exists a
partition {I1, I2} of I , such that

∑
`∈I1 a` =

∑
`∈I2 a`; oth-

erwise, it is a no-instance. Without loss of generality, we can
assume that

∑
`∈I a` is always even.

We construct the following game for a given instance I of
the PARTITION problem. Let γ = 1

2

∑
`∈I a`. We let n = 2

and k1 = k2 = 1, i.e., there are two defenders, each having
one resource. Let there be l targets: T = {t1, . . . , tl}. The
attacker’s payoff parameters are ra(t`) = a`

γ and pa(t`) =
a`
γ − 1 for each ` ∈ [l]. Defenders 1 and 2 have the same

payoff parameters: rdi (t`) = 1 − a`
γ and pdi (t`) = −a`γ for

each i ∈ {1, 2} and ` ∈ [l]. Note these parameters makes
the game zero-sum between the attacker and each individual
defender, i.e., we have

Ua(c, t) = −Udi (c, t) (7)

for any coverage c and target t ∈ T . We will argue that I is
a yes-instance if and only if there is a coalition structure in
the 0+-core, which is not a grand coalition structure.

The “only if” direction. Suppose that I is a yes-instance;
there exists a partition {I1, I2} of I , with

∑
`∈I1 a` =∑

`∈I2 a` = γ. We argue that the coalition structure CS =

{〈{1},x1〉, 〈{2},x2〉} is in the 0+-core, where for each
i = {1, 2} and ` ∈ [l] we let xi` = a`

γ if ` ∈ Ii and xi` = 0,
otherwise. Indeed, x1 and x2 satisfy the budget constraint:



it holds that∑
`∈[l]

xi` =
∑
`∈Ii

xi` =
1

γ

∑
`∈Ii

a` = 1 ≤ ki,

so they are feasible strategies. We will next show that CS
satisfies the conditions in Lemma 4.5.

First, since each ` is contained in exactly one of I1 and I2,
each target t` is protected by exactly one defender; hence,
CS results in coverage c` = a`

γ for each target t`. Taking
this value into the attacker’s utility function gives exactly

Ua(c, t) = 0 for all t ∈ T, (8)

so BR(c) = T , which implies that c is a level coverage. In
addition, we have

∑
`∈[l] c` =

∑
`∈I1 x1` +

∑
`∈I2 x2` =

2 = k1 + k2. This means that c = c and the first condition
in Lemma 4.5 holds.

To see that the second condition in Lemma 4.5 also holds,
we pick an arbitrary t∗ ∈ T . By our calculation above, we
have ct∗ > 0 (we have ct > 0 for all t ∈ T ). Consider
any deviation 〈D,x〉 and let the coverage resulting from this
deviation be c′ (assuming that the revenger, if any, sticks to
their strategy in CS , which suffices to thwart the deviation
in this particular game as we will show). Since c = c, for at
least one target t ∈ T it holds that c′t ≤ ct, i.e., its coverage
will not increase after the deviation; indeed, if this is not the
case, we would have

∑
t∈T c

′
t >

∑
t∈T ct = k1 +k2, which

violates the budget constraint. Moreover, since c is level, we
must also have c′t ≤ ct for all t ∈ BR(c′). If this is not the
case, we would have c′t > ct and henceUa(c′, t) < Ua(c, t)
by monotonicity. It follows that Ua(c′, t′) < Ua(c′, t) <
Ua(c, t) = Ua(c, t′) for all t′ /∈ BR(c′) (where the last
equality is by (8)), which then implies that c′t′ > ct′ . Conse-
quently,

∑
t∈T c

′
t >

∑
t∈T ct = k1 + k2, which violates the

budget constraint, too. Therefore, we have

Ud1 (c′, t) ≤ Ud1 (c, t) = Udi (c, t∗),

where Ud1 (c, t) = Udi (c, t∗) is due to the fact that
Ud1 (c, t) = 0 for all t ∈ T by (7) and (8).

The“if” direction. Conversely, suppose that there exists a
coalition structure CS in the 0+-core which is not a grand
coalition structure. Indeed, in this constructed game, if CS
is not a grand coalition structure, it has to be in the form
CS = {〈{1},x1〉, 〈{2},x2〉}. Let c be the coverage vec-
tor resulting from CS . By Lemma 4.5, c = c. Observe that
the maximal level coverage c must be unique in a canonical
game. Hence, according to our calculation above, we have
c` = c` = a`

γ for each ` ∈ [l], by which c is level (see (8))
and

∑
`∈[l] c` = k1 + k2 = 2.

By (3), we now have c` = 1−(1−x1`)(1−x2`) = a`
γ . Let

I1 = {` ∈ [l] : x1` > 0} and I2 = {` ∈ [l] : x2` > 0}. Note

that we can establish the following chain of inequalities:

2 =
∑
`∈[l]

c` =
∑
`∈[l]

(1− (1− x1`)(1− x2`))

=
∑
`∈[l]

(x1` + x2` − x1` · x2`)

≤
∑
`∈[l]

(x1` + x2`)

≤ k1 + k2 = 2,

which must therefore all be equalities. In particular, for the
transition in the third line to be an equality, it must be that
x1` ·x2` = 0 for all `; hence, I1 ∩ I2 = ∅. For the transition
in the last line to be an equality, it must be that

∑
`∈[l] xi` =

ki = 1 for both i = 1 and 2.
Therefore, for each ` ∈ I1, we have x2` = 0; hence, we

have c` = x1` = a`
γ , and∑

`∈I1

a`
γ

=
∑
`∈I1

x1` =
∑
`∈[l]

x1` = 1,

which means that
∑
`∈I1 a` = γ. Similarly, we also have∑

`∈I2 a` = γ. Since I1 ∩ I2 = ∅, we conclude that I is a
yes-instance.

A.3 Proof of Proposition 4.8
Assume in contradiction that there exist such CS, CS ′. Let
CS` be a series of coalition structure, each one some ε`-
Core, and ε` → 0. Consider the deviation D = ([n], π)
which simulates the coalition structure CS ′. Let ε > 0 be
the minimal defender advantage of deviation D from CS .

By limit definition, there exist `i ∈ N such that for
each ` ≥ `i, Udi (CS`) < Udi (CS) + ε/2. Taking `0 =
max `1, . . . , `n, we get that for each defender i, Udi (CS`) <
Udi (CS) + ε/2 ≤ Udi (CS ′) − ε/2. This means that D is
an ε/2-successful deviation, for any coalition structure CS`
where ` ≥ `0. However, for some large enough ` ≥ `0, we
have that ε` < ε/2. Then considering CS`, D is an ε/2 suc-
cessful deviation, in contradiction to the fact that CS` is in
the ε`-Core.

A.4 Proof of Proposition 4.9
In this proof, we let to Udi (CS) := lim`→∞ Udi (CS`) for
brevity.

Assume in contradiction that there exist such CS, CS ′, i.
Then consider a deviation of the grand coalition structure,
with a strategy that simulates the strategy of CS ′, D =
([n], π). Also, let CS` → CS, where each CS` is in some
weak ε`-Core, and ε` → 0. We will show that D is a weak
successful deviation, for some sub-series of CS`. This will
lead to a contradiction to the fact that CS is in the weak 0+-
Core.

Indeed, let ε = Udi (CS ′) − Udi (CS). By definition of
the limit, there exist some `1 such that for any ` ≥ `1,
|Udi (CS)− Udi (CS`) < ε/2. Therefore,

Udi (CS ′) > Udi (CS) + ε > Udi (CS`) + ε/2



In order to have a contradiction, we must find infinitely
many `’s such that for any defender j 6= i,

Udj (CS ′) ≥ Udj (CS) ≥ Udj (CS`)

This will make D a weak ε/2 successful deviation from
such CS`. Then, as ε` → 0, there will be some suffi-
ciently large `2 such that for any ` ≥ `2, ε` < ε/2. Tak-
ing `0 = max `1, `2 will give a contradiction to the fact that
CS`0 is in the weak ε`-Core.

We divide into cases. Consider the following set L:

L := {` ∈ N|∀i ∈ [n] : Udi (CS`) ≤ Udi (CS)}

If this set is infinite, then consider the subseries {CS`}`∈L.
It is also a series of coalition structure, each in some weak
ε′`-Core, and ε′` → 0, CS ′` → CS . Moreover, for any ` we
have Udj (CS) ≥ Udj (CS ′`), and we get the contradiction we
wanted.

Else, the set L is finite. This means that there exist `2,
such that for any ` ≥ `2, there exist a defender i` with a
defender utility greater than its utility in the limit point. Now,
as this happens infinitely many times, there is a defender i
such that for infinitely many indices, this condition happens.
Therefore, there is a sub series L′ ⊆ N such that the utility
of defender i is non-increasing.

However, in SSG this means that the utility of all defend-
ers is non-increasing. Let us denote the series of coalition
structures we got by CS ′′` . Then since the utility of each de-
fender is non-increasing, we have that CS ′′` is in the weak
ε′′`′ -Core for any `′. Hence, by considering the constant se-
ries of the coalition structures of itself, we get that CS ′′` is in
the 0+-Core, for each `.

Now, consider two consecutive coalition structures,
CS ′′` , CS

′′
`+1. As the utility of each defender can only de-

crease, there are two options. In the first option, there is at
least one defender i who’s utility is strictly decreasing, by
δ > 0. In that case, the grand coalition structure that sim-
ulates CS ′′` is a weak δ successful deviation for all coali-
tion structures CS ′′`′ where `′ > `. By limit definition,
there exist `′′2 such that for any `′′ ≥ `′′2 , ε′′` < δ. Taking
`′′0 = max `′′1 , `

′′
2 will result in a coalition CS ′′`′′0 which is not

in the weak ε′′`0 -Core. This results in a contradiction.
In the second option, the utilities of all defenders are in-

dependent of `. In that case, for any defender j we have an
equality, namely Udj (CS) = Udj (CS`), which is enough for
us to get our contradiction.

A.5 Proof of Lemma 5.3
First, we argue that when v > −∞, there does not exists an
ε-safe deviation y ∈ CkD for D, such that yt ≤ xt for all t
and yt′ < xt′ for some t′ ∈ T . Indeed, if this is the case, we
can construct a strategy z such that

zt =

{
yt + δ if t ∈ T−y
yt if t ∈ T+

y .

Note that yt < sεt ≤ 1 and
∑
t∈T yt <

∑
t∈T xt ≤ kD, so

when δ > 0 is sufficiently small, we have zt ∈ [0, 1] for all
t ∈ T and

∑
t∈T zt ≤ kD, which means that z ∈ C. On the

other hand, T+
z = T+

y and T−z = T−y , so by monotonicity
of the utility function we have

max
t∈T−z

Ua(z, t) = max
t∈T−y

Ua(z, t) < max
t∈T−y

Ua(yt, t) = v,

which contradicts the assumption that the ε-safety value is
v.

Now pick an arbitrary t1 ∈ T−x . By definition, v =
maxt∈T−x Ua(x, t) ≥ Ua(x, t1), so it remains to show that
v ≤ Ua(x, t1). Suppose for the sake of contradiction that
v > Ua(x, t1). Then it is not hard to see that x will re-
main an optimal solution to (5) if we reduce xt1 by a suf-
ficiently small amount: indeed, this modification does not
change T−x , while it keeps v ≥ Ua(x, t) for all T−x . This
contradicts our observation above.

Similarly, pick an arbitrary t2 ∈ T+
x . If v < Ua(x, t2),

then we can reduce xt2 by a small amount δ; while this may
cause t2 to become an element in T−x we can ensure that
v < Ua(x, t2) still hold by choosing a sufficiently small δ,
so x remain optimal for (5), which is a contradiction. Thus,
it must be that v ≤ Ua(x, t2).

Finally, to see (ii), note that by definition xt ≥ sεt for all
t ∈ T+

x . Suppose that xt′ > sεt′ for some t′ ∈ T+
x . Then we

can reduce xt′ by a small amount while still keep xt′ > sεt′ ;
after this modification, x will still be optimal for (5), which,
too, contradicts our observation.

A.6 Proof of Lemma 5.4
We first prove the “if” direction.

The “if” direction. We show that the ε-safe strategy x is
also an ε-successful strategy for coalition D. Suppose that
D uses x, the revengers’ coalition R uses some strategy y ∈
CkR , and x and y jointly result in a coverage vector c, i.e.,
ct = 1− (1− xt)(1− yt) for each t ∈ T . We argue that no
matter which y coalitionR selects, every i ∈ D will achieve
a utility improvement of at least ε.

First, consider the first condition. Suppose that v = −∞.
Then by definition we have xt ≥ sεt for all t ∈ T ; hence,
ct ≥ xt ≥ sεt . For each i ∈ D, let t∗ = bri(c); by mono-
tonicity of the utility function and (4), we have

Udi (c, t∗) ≥ Udi (sε, t∗) ≥ Udi (sεi , t
∗) ≥ Udi (CS) + ε,

so x is indeed ε-successful for D.

Next, if one of the second and third conditions hold, we
first argue that BR(c) ∩ T−x = ∅. Indeed, suppose for the
sake of contradiction that there exists t′ ∈ BR(c) ∩ T+

x . We
can establish the following inequality for all t ∈ T :

Ua(c, t) ≤ Ua(c, t′) ≤ Ua(x, t′) = v,

where the first transition is due to t′ ∈ BR(c), the second
is due to ct′ ≥ xt′ , and the third follows by Lemma 5.3 (i).
Expanding Ua(c, t) and rearrange the terms, we obtain that

ct ≥
ra(t)− v

ra(t)− pa(t)
= γt.



Moreover, expanding ct using ct = 1 − (1 − xt)(1 − yt)
gives

yt ≥
γt − xt
1− xt

≥ γt − sεt
1− sεt

.

Therefore, if the second condition holds, we have γt′ >
1 for some t′ and it follows by the above equation that
yt′ > 1, which contradicts the assumption that y is a feasi-
ble strategy. If the third condition hold, we have

∑
t∈T yt ≥∑

t∈T+
x

γt−sεt
1−sεt

> kR, which means that y violates the bud-
get constraint, so it cannot be a feasible strategy, either — a
contradiction, too.

As a result, BR(c) ∩ T−x = ∅, which implies that t∗ :=
bri(c) ∈ T+

x for every i ∈ D. By definition, xt∗ ≥ sεt∗ , so
we have ct∗ ≥ xt∗ ≥ sεt∗ ≥ sεit∗ and hence, by monotonicity
of the utility function and (4), it follows that

Udi (c, t∗) ≥ Udi (sεi , t
∗) ≥ Udi (CS) + ε,

so x is ε-successful, too.

The “only if” direction. Suppose for the sake of contra-
diction that there is an ε-successful deviation strategy z for
D, but it holds that v > −∞, γt ≤ 1 for all t ∈ T+

x , and∑
t∈T+

x

γt−sεt
1−sεt

≤ kR.
We first argue that zt ≥ xt for all t ∈ T .

Claim 1. zt ≥ xt for all t ∈ T .

Proof. Suppose this is not the case, we let Q = {t ∈ T :
zt < xt} so Q 6= ∅; we let t∗ ∈ T be a target that max-
imizes Ua(z, t) among all t ∈ Q. We show that the re-
venger’s coalition can take the following strategy y to thwart
the deviation of D: for each t ∈ T , we let

yt =

{
γt−sεt
1−sεt

if t ∈ T+
x \ {t∗}

0 if t ∈ T−x ∪ {t∗}.

Indeed, y is a feasible strategy for R: By assumption,
γt > 1 for all t ∈ T , so γt−sεt

1−sεt
≤ 1 and yt ≤ 1 for all

t; By Lemma 5.3 (i), we have Ua(x, t) ≥ v for all t, so
expanding this inequality and using Lemma 5.3 (ii) we get
ra(t)−v

ra(t)−pa(t) ≥ xt = sεt for all t ∈ T+
x , which means that

γt ≥ sεt and in turn yt ≥ 0 for all t; Finally, the assumption
that

∑
t∈T+

x

γt−sεt
1−sεt

≤ kR means that y ∈ CkR .
When coalitionD uses z, the revengers’ coalition using y

results in coverage ct = 1−(1−zt)(1−yt) for each target t.
To see that y is effective in thwarting the deviation, we first
show that y results in t∗ ∈ BR(c), i.e., Ua(c, t∗) ≥ Ua(c, t)
for all t ∈ T . We analyse the value of Ua(c, t) for different
t.

• First of all, since v > −∞, we have Ua(x, t∗) ≥ v by
Lemma 5.3 (i); since yt∗ = 0 and zt∗ < xt∗ , we have

ct∗ = 1− (1− zt∗)(1− yt∗) = zt∗ < xt∗ ,

which, by monotonicity of the utility function, means that

Ua(c, t∗) = Ua(z, t∗) > Ua(x, t∗) ≥ v. (9)

• For all t ∈ T+
x \ (Q ∪ {t∗}), we have yt =

γt−sεt
1−sεt

and
hence,

ct = 1− (1− zt)(1− yt)
≥ 1− (1− xt)(1− yt)

= 1− (1− sεt)
(

1− γt − sεt
1− sεt

)
= γt,

where we use zt ≥ xt as t /∈ Q; this further implies that

Ua(c, t) ≤ Ua(γt, t) = v. (10)

• For all t ∈ T−x \ (Q ∪ {t∗}), we have yt = 0, so ct =
1− (1− zt)(1− yt) = zt ≥ xt and hence,

Ua(c, t) ≤ Ua(x, t) = v, (11)

where Ua(x, t) = v due to Lemma 5.3 (i).
• For all t ∈ Q, by the choice of t∗ we have Ua(z, t) ≤
Ua(z, t∗), so it follows that

Ua(c, t) ≤ Ua(z, t) ≤ Ua(z, t∗) = Ua(c, t∗), (12)

where we also use the fact that ct = 1−(1−zt)(1−yt) ≥
zt and the first transition of (9).

Thus, combining (9)–(12) gives Ua(c, t) ≤ Ua(c, t∗) for
all t ∈ T , as we desire; we have t∗ ∈ BR(c). Since

ct∗ = zt∗ < xt∗ ≤ sεt∗ = sεit∗

for some i ∈ D, we have

Udi (c, bri(c)) ≤ Udi (c, t∗)

< Udi (sεit∗ , t
∗) = Udi (CS) + ε, (13)

where the last equality holds by (4) (note that now we have
sεit∗ > 0, so sεit =

Udi (CS)+ε−p
d
i (t
∗)

rdi (t
∗)−pdi (t∗)

). In other words, de-
fender i will not benefit from the deviation by more than ε,
which contradicts the assumption that z is an ε-successful
deviation of D.

Claim 2. zt > xt for all t ∈ T−x .

Proof. Similarly to the proof of Claim 1, suppose that this is
not the case and let Q = {t ∈ T−x : zt = xt}; given Claim
1, we have Q 6= ∅. Pick an arbitrary t∗ ∈ Q. We show that
the revenger’s coalition can take the following strategy y to
thwart the deviation of D: for each t ∈ T , we let

yt =

{
γt−sεt
1−sεt

if t ∈ T+
x

0 if t ∈ T−x .

Let c be the coverage vector resulting from the revengers’
coalition using the above y. For all t ∈ T+

x and all t ∈ T−x ,
the same arguments for (10) and (11) can be used to show
that

Ua(c, t) ≤ v for all t ∈ T.
Moreover, since t∗ ∈ Q ⊆ T−x , we have zt∗ = xt∗ and
yt∗ = 0; hence, ct∗ = 1− (1− zt∗)(1− yt∗) = xt∗ and

Ua(c, t∗) = Ua(x, t∗) = v



by Lemma 5.3 (i).
Therefore, Ua(c, t∗) ≥ Ua(c, t) for all t ∈ T , which

means that t∗ ∈ BR(c). The same argument for (13) can be
used to show that Udi (c, bri(c)) < Udi (CS) + ε, and hence
we obtain a contradiction with the assumption that z is ε-
successful for D.

Now we have shown that zt ≥ xt for all t ∈ T and zt >
xt for all t ∈ T−x . Observe that

T−z := {t ∈ T : zt < sεt} ⊆ T−x ,

which gives

max
t∈T−z

Ua(z, t) ≤ max
t∈T−x

Ua(z, t) ≤ max
t∈T−x

Ua(x, t),

where the second transition is due to the fact that zt ≥ xt for
all t ∈ T . In other words, z is a strictly better solution to the
optimization problem in (5), which contradicts the assump-
tion that x is an ε-safe deviation strategy for D.

A.7 Proof of Theorem 5.6

Let Θ be the set of defender types (so λ = |Θ|), let Nθ be
the set of defenders of each type θ ∈ Θ, and let θi be the
type of each defender i ∈ [n]. We first argue that if there is
an ε-successful deviation strategy x for coalition D, then x
is also ε-successful for the following coalition

D̂ := {i ∈ [n] : θi = θj for some j ∈ D} .

Indeed, since D ⊆ D̂, we have kD̂ ≥ kD, which means
that x ∈ CkD ⊆ CKD̂ is a feasible strategy of coalition D̂.
By definition, the fact that x is ε-successful forD means that
for any i ∈ D and any strategy y ∈ CkR of the revengers’
coalition R = [n] \D, it holds that

Udi (CS ′) ≥ Udi (CS) + ε, (14)

where CS ′ = {〈D,x〉, 〈R,y〉}. Consider an arbitrary de-
fender i ∈ D̂ and any strategy ŷ ∈ CkR̂ of the revengers’

coalition R̂ = [n] \ D̂; let CS ′′ =
{
〈D,x〉, 〈R̂, ŷ〉

}
. We

have R̂ ⊆ R, so ŷ ∈ CkR̂ ⊆ CkR ; it then follows by (14) that

Udj (CS ′′) ≥ Udj (CS) + ε

for all j ∈ D. Now, if we pick a defender j ∈ D with
θj = θi, the utility functions Udi and Udj will be the same,
so this immediately gives Udi (CS ′′) ≥ Udi (CS) + ε, which
implies that x is ε-successful for D̂.

Given the above observation, we only need to consider
coalitions D such that for every θ ∈ Θ either D ∩ Nθ =
Nθ or D ∩ Nθ = ∅, and check if there is an ε-successful
strategy for them. There are 2λ such coalitions and for each
of them this can be done in time poly(m,n) according to
Theorem 5.5.

B Examples
B.1 Example of an SSG with an empty weak

0+core
First we introduce a new notation. We say that defender i
prefers target t over target t′, and write t′ ≺i t, if rdi (t′) <
pdi (t). In this case, no matter what strategy is taken, defender
i will always prefer the attacker to attack target t rather than
target t′.

Example B.1. Consider an SSG with 3 targets, t1, t2, t3,
and 3 defenders. Defenders 1, 2 have no security resources,
k1 = k2 = 0, while defender 3 has k3 = 1 security re-
source. Assume further that pa(t1) = pa(t2) = pa(t3) = 0,
ra(t1) = ra(t2) = 1, but ra(t3) = 0.5.

Now, let’s say that the defenders’ utility functions are as
follows: Defender 1 has the preference t3 ≺ t2 ≺ t1. De-
fender 2 has preference t3 ≺ t1 ≺ t2 . For defender 3, the
preference is t3 ≺ t1 = t2. We claim that in this case, the
strict core is empty.

Proposition B.2. Example B.1 is an example of an SGG
where the strict 0+ core is empty. That is, there is no se-
quence of coalition structures {CS`}∞`=1 in the strict ε`-core,
with ε` → 0.

Proof. Since coalition structures in the strict core must form
a maximal coverage by Lemma 4.5, any coalition struc-
ture CS in the core must correspond to the coverage vector
(1/2, 1/2, 0). Therefore, the only thing left to decide is the
partition in the coalition structure.

We will show that for any coalition structure, there always
exist a weak ε deviation with ε ≥ δ0 for some fixed δ0. This
in turn means that there cannot be a sequence of coalition
structures in the strict ε` Core, where ε` → 0, as this will
imply the existence of a coalition structure CS`0 in the strict
ε`0 -core, where ε`0 < δ0, resulting in a contradiction. We
let δ1 = pd1(t1) − rd1(t2), δ2 = pd2(t2) − rd1(t1) and ε3 =
pd3(t1)− rd3(t3)

Indeed, let CS be some coalition structure. If t2 ∈ BR(c),
let the coverage of target t2 be denoted by c. Note that
since the total amount of resource is up to 1, it must be
that c ≤ 1/2. Assume for a moment that c < 1/2. The
utility of defender 1 is therefore Ud1 (CS) = c · rd1(t2) +
(1 − c) · pd1(t2) ≤ rd1(t2). The utility of defender 3 is
Ud3 (CS) = c · rd3(t2) + (1− c) · pd3(t2).

Now consider the following deviation of defenders 1, 3:
cD = (c, 1/2). Since defender 2 has no resources, his re-
sponse is to do nothing, that is cR = (0, 0). Therefore, the
coverage vector after the deviation is c′ = cD, and thus
BR′ = BR(c′) = {t1}. This means that defender 1 will
get at-least pd1(t1) ≥ Ud1 (CS) + δ1. Defender 3 will get the
same utility Ud3 (CS) he had before. Therefore, in this case
we have a weak δ1 successful deviation.

Similarly, in the case where t1 ∈ BR(c), we can find a
weak δ2 successful deviation. Therefore, there always exist
a weak ε successful deviation, with ε ≥ δ0 = min(δ1, δ2),
as desired.

Therefore, the only case left to deal with is the cover-
age vector (1/2, 1/2, 0). Assume in contradiction it is in the



strict 0+-core, and let {CS`}∞`=1 where each CS` is in the
strict ε`-core, with ε` → 0 and CS` → CS .

For some `0, we have that for every ` ≥ `0, ε` ≤ δ0.
In that case, as we have shown, CS` must form a coverage
(1/2, 1/2, 0). However in this case, consider the deviation of
defender 3, (0, 0, 0). Since defenders 1, 2 have no resources,
this will be the coverage vector after the deviation as well.
In this case, BR(c) = {1, 2}, and therefore since 3 ≺3 1, 2,
defender 3 will get an improvement of utility, from rd3(t3),
to pd3(t1) = pd3(t2). This is an ε3 successful deviation. Let
` ≥ `0 be such that ε` < ε3, and we will get a contradiction
to the fact that CS` is in the ε`-core.

Therefore, taking δ0 = min(δ1, δ2, δ3) gives us the de-
sired property.
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